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Motivation



Research under DOE mission science

● Large amount of research relies on image-based data
● Amount of data continues to increase
● Science questions are increasing in complexity and sophistication
● Opportunity to improve data analysis algorithms and software
● Enable accurate and deep understanding for decision-making
● Analysis bottlenecks: unsuitable data representation, optimization taking into 

account the veracity of the data, use physical constraints, consider multiple 
scales and dimensions, computational complexity



Example

The 4D Camera - Dynamic Diffraction Direct Detector

● Latest innovation in EM
● EM experiments: amount of information used 

among all the possible information generated as 
the microscope's beam interacts with samples

● 4D Camera: captures all!
● Fast, high-resolution microscopy => generating 4 

terabytes of data per minute
● Atomic-scale images in millionths-of-a-second

The Transmission Electron Aberration-corrected 
Microscope (TEAM 0.5) at Berkeley Lab has been 
upgraded with a new detector that can capture 
atomic-scale images in millionths-of-a-second 
increments. (Credit: Thor Swift/Berkeley Lab)



3D images of platinum particles between 2-3 nanometers in diameter shown rotating in liquid under an electron 
microscope. Each nanoparticle has approximately 600 atoms. White spheres indicate the position of each atom in 
a nanoparticle. (Courtesy of IBS)

https://docs.google.com/file/d/1Rm7Dsk1Vdrsm-JL_V0KX3NTjs7xDczNX/preview


Basic Concepts



How and why graphs?

● Discrete and mathematically simple representation: efficiency and 
correctness

● Minimalistic representation: flexibility
● Graph theory is out there already!
● Allows for structural representation



Graphs

A graph is a set of vertices and edges G={V,E}

V = {A, B, C, D, E}    E = {AB, BC, BD, CD, CE, ED}

● Node: fundamental unit out of which graphs are formed
● Edge: gives relationship between vertices
● Important terms: adjacency, complete graph, subgraph, 

cliques, neighborhood
● Directed vs undirected?



Graphs from images

Pixel-based graph

Region-based graph

Important to notice: nodes and neighborhood



Energy function with two terms:

1. Data term
2. Smoothness term

Usually we want to minimize this energy 
function to find the best "graph 
configuration" (with highest probability)

Markov Random Fields



Markov Random Fields



Markov Random Fields



Markov Random Fields



Markov Random Fields



Interactive Machine Learning for 
Tomogram Segmentation



Electron Cryotomography - CryoET

"An electron microscope is used to record a series of two-dimensional images as a 
biological sample held at cryogenic temperatures is tilted. Using computational 
methods, the two-dimensional images can be aligned to yield a three-dimensional 
(tomographic) reconstruction of the sample." Nature.com

Special type of CryoTEM. Samples are immobilized in non-crystalline ice and 
imaged under cryogenic conditions. Provides unique information on protein 
structure and interactions in situ.



Electron Cryotomography - CryoET

Credit: Faisal Mahmood "An Extended Field-based method for 
Noise Removal from Electron Tomographic Reconstructions"

Tilt Series Collection

Segmentation



Electron Cryotomography - CryoET

● Unique details about specimens including 
subcellular organelles or structurally 
heterogeneous protein complexes

● Drug development through the study of drug 
liposome

● Because of the macromolecular resolution, used 
to study viruses and small cells

By Eikosi - Own work, CC BY-SA 4.0, 
https://commons.wikimedia.org/w/index.php?curid=45409611



Issues with segmentation methods

1. Connections between inner and outer membrane prevents isolation of one 
membrane

2. Low SNR causes membranes to be rough/noisy
3. Variations in density results in holey membrane surface
4. Proteins and membranes can not be separated
5. Manual segmentation is the most effective method - 3 months of work



Research goals

Algorithm that:

1. Detects and labels distinct cellular features
2. Distinguishes between proteins and membrane
3. Generated smooth surface for membranes, free from noise and artificial holes

Approach:

1. Machine learning with user interaction

Novelties:

1. Using prior knowledge and user input to correct and direct segmentation
2. Not pixel based; higher-level (shape patterns) instead



General approach



Non-local means denoising

The NLM algorithm replaces the value of a pixel by an average of a selection of 
other pixels values: small patches centered on the other pixels are compared to 
the patch centered on the pixel of interest, and the average is performed only for 
pixels that have patches close to the current patch. We estimate the noise 
standard deviation directly from the image. This algorithm performs well by 
reducing noise and restoring well textures that would be blurred by other denoising 
algorithms (resulting in preservation of valuable details).

Jacques Froment. Parameter-Free Fast Pixelwise Non-Local Means Denoising. Image Processing On Line, 2014, vol. 4, 
pp. 300-326. DOI: 10.5201/ipol.2014.120



Processing steps

Non-local means filtering



Bilateral filter

This filter is an edge-preserving and noise reducing filter. It averages pixels based 
on their spatial closeness and radiometric similarity. In other words, it smooths 
homogeneous regions of the image and preserves details (such as borders of 
objects).

C. Tomasi and R. Manduchi. “Bilateral Filtering for Gray and Color Images.” IEEE International Conference on Computer 
Vision (1998) 839-846. DOI:10.1109/ICCV.1998.710815



Processing steps

Bilateral filtering



Adaptive local contrast enhancement

This process applies a technique called Contrast Limited Adaptive Histogram 
Equalization (CLAHE). It uses histograms computed over different tile regions of 
the image. Local details can therefore be enhanced even in regions that are 
darker or lighter than most of the image.

Zuiderveld, Karel. “Contrast Limited Adaptive Histogram Equalization.” Graphic Gems IV. San Diego: Academic Press 
Professional, 1994. 474–485.



Processing steps

Adaptive local contrast enhancement



Ridge detection

We perform ridge detection through Hessian matrix calculation: we convolve the 
image with the second derivatives of a Gaussian kernel in different directions. 
Then we find the eigenvalues of the Hessian matrix, detecting ridge structure 
where the intensity changes perpendicular but not along the structure.

Ng, C. C., Yap, M. H., Costen, N., & Li, B. (2014, November). Automatic wrinkle detection using hybrid Hessian filter. In 
Asian Conference on Computer Vision (pp. 609-622). Springer International Publishing. 
DOI:10.1007/978-3-319-16811-1_40



Processing steps

Ridge detection



Processing steps

Ridge detection



Skeletonization

The skeletonization process reduces binary objects to 1 pixel wide 
representations. The idea behind this process is to simplify connected 
components aiming feature extraction.

A fast parallel algorithm for thinning digital patterns, T. Y. Zhang and C. Y. Suen, Communications of the ACM, March 1984, 
Volume 27, Number 3. 

T.-C. Lee, R.L. Kashyap and C.-N. Chu, Building skeleton models via 3-D medial surface/axis thinning algorithms. 
Computer Vision, Graphics, and Image Processing, 56(6):462-478, 1994.



Processing steps

Skeletonization



Bifurcation detection

This step aims to simplify the skeleton by subdividing every connected component 
by detecting bifurcations. In the end of this process, every component in the image 
is a simple open curve. The bifurcations are detected using a process called 
morphological hit-or-miss, which finds a given configuration (in our case a possible 
bifurcation) in a binary image using the morphological erosion operator.

https://en.wikipedia.org/wiki/Hit-or-miss_transform



Processing steps

Bifurcation detection



Processing steps

Bifurcation detection



Geometric approximation

Now that the binary images contains components that are simple open curves, we 
go through a preprocessing for the graph construction step. Here, we approximate 
each curve by simple straight lines.

Formally, the algorithm approximates a curve/polygon with another curve/polygon 
with less vertices so that the distance between them is less or equal to the 
specified precision. The algorithm used is called Douglas-Peucker algorithm.

Prasad, Dilip K.; Leung, Maylor K.H.; Quek, Chai; Cho, Siu-Yeung (2012). "A novel framework for making dominant point 
detection methods non-parametric". Image and Vision Computing. 30 (11): 843–859. doi:10.1016/j.imavis.2012.06.010.

Wu, Shin-Ting; Marquez, Mercedes (2003). "A non-self-intersection Douglas-Peucker algorithm". 16th Brazilian Symposium 
on Computer Graphics and Image Processing (SIBGRAPI 2003). Sao Carlos, Brazil: IEEE. pp. 60–66. CiteSeerX 
10.1.1.73.5773. doi:10.1109/SIBGRA.2003.1240992. ISBN 978-0-7695-2032-2.



Processing steps

Approximation points



Low-level graph representation

In this step, we represent the structures in the image as a graph:

● Each node of the graph is a line segment obtained from the previous step
● Two nodes are connected if they are in the same curve
● With this process, we obtain what is called a forest (a collection of tree-like 

graphs)



Processing steps

Low-level graph



Object reconstruction using MRF model

Outer membrane reconstruction process:

1) User chooses a starting point from the low-level graph
2) Algorithm reconstructs the object using prior information

a) Curvature of the targeted feature
b) Closeness between features



Processing steps

Initial step



Processing steps

Reconstruction



High-level graph representation

This time we represent the feature detected (outer-membrane) also as a graph. 
However, in this case, each node of the graph is a curve and nodes are connected 
to obtain the final approximation of the feature (mathematical interpolation).



Processing steps

High-level graph representation



Processing steps

High-level graph representation



Surface reconstruction

Based on the feature reconstructed in one slice, we now are able to reconstruct 
that same feature in 3D automatically also using prior information targeting 
smoothness and closeness.



Processing steps

Surface reconstruction



Other applications - polyethylene



Low-level graph



High-level graph and interpolation



Parallel Markov Random Fields



Problem: segmentation of 3D scientific images

55



Contributions

● Three different implementations of a Probabilistic Graphical Model optimization 
algorithm: C11-threads, OpenMP, and DPP

● In-depth study of shared-memory parallel performance of the three 
implementations

○ Analysis of hardware performance counters on multiple platforms
○ DPP implementation exhibits better runtime but less favorable scaling characteristics

56



The PMRF process
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Baseline MRF
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C++/Threads PMRF
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C++/OpenMP PMRF
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VTK-m/DPP PMRF
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Experiment and Results

We aim to answer two primary questions:

1. How well the different implementations perform on a single-socket study
a. What are the key performance characteristics for each version?

2. Collect hardware performance counters to understand how well each 
implementation vectorizes and makes use of the memory hierarchy 

a. What are the factors that lead to these performance characteristics?

62



Experiment and Results

Datasets: experimental dataset generated at the ALS beamline 8.3.2 
containing cross-sections of a geological sample

1. Sandstone2K: 2580 x 2610 x 500
2. Sandstone5K: 5160 x 5220 x 500

63



Performance and Scalability
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Performance and Scalability
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Hardware performance counters
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Hardware performance counters
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Key findings
1. The VTK-m/DPP code is executing far fewer floating point instructions
2. Vectorization ratios

a. KNL: comparable vectorization ratios (43% - 51%)
b. Ivy Bridge: 70% for the C++/OpenMP and C++/Threads; 18% for the VTK-m/DPP implementation

i. Differences in the code itself
ii. Variation in how the compiler auto-vectorizes

3. Scalability
a. VTK-m/DPP (KNL): decreasing runtime up to 32 cores, along with increase in the L2 Cache Miss 

ratio
b. C++/Threads (KNL): decreasing runtime up to 32 cores, after which point the runtime increases 

significantly -> C++/OpenMP presents better results most likely because of the highly optimized 
OpenMP loop parallelization

c. On the Ivy Bridge platform all implementations exhibit better scalability: large L3 cache that is 
shared across all cores
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Conclusion and Future Work
● Understand the performance characteristics of three different approaches for 

doing shared-memory parallelization of a PGM optimization code
● Improve throughput of scientific analysis tools in light of increasing sensor and 

detector resolution
● We expected that the VTK-m/DPP implementation was running faster because 

of better vectorization… not true! It executes many fewer instructions
● This study is timely, shedding light on the performance characteristics of a 

non-trivial, data-intensive code implemented with three different 
methodologies

● Future: pressing deeper into the topic of platform portability: OpenMP version 
to emit GPU code
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Thanks!

tperciano@lbl.gov
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